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Abstract In this paper we describe briefly a set of procedures for the optimal design of 

full mission aerospace systems. This involves multiphysics simulations at various fidelity levels, 
surrogates, distributed computing and multiobjective optimization. Low-fidelity analysis is used 
to populate a database of inputs and outputs of the system simulation and Neural Networks are 
then designed to generate inexpensive surrogates. Higher fidelity is used only where is warranted 
and also to do a local exploration after global optimization techniques have been used on the 
surrogates in order to provide plausible initial values. The ideas are exemplified on a generic 
supersonic aircraft configuration, where one of the main goals is to reduce the ground sonic 
boom. 
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1.      INTRODUCTION  
 
Optimization problems in many industrial applications are extremely hard to solve in a 

general manner. Good examples of such problems can be found in the design of aerospace 
systems. Due to the high level integration of today’s systems and the increase in complexity of 
analysis and design methods for the evaluation of system performance, such problems are 
characterized by multi-disciplinary simulations, goal functionals and constraints that are 
expensive to evaluate and, in addition, they often have large-dimensional design parameter 
spaces that further complicate the solution of the problem.  

Moreover, the resulting optimization problems are frequently non-convex, i.e., multi-
modal and ill-conditioned, making complete optimizations of complex aircraft configurations 
prohibitively expensive. Finally, the simulations may require using legacy or commercial codes 
that have to be used as black boxes which, in particular, may not produce the derivative 
information required by some optimization techniques. 

Multi-modal, ill-conditioned problems require global optimization techniques and 
regularization [12,15] and present some of the most challenging problems for robust 
initialization and ulterior accurate solution. In high-dimensional spaces the available techniques 
are problematic at their best and one often must resort to surrogate models, divide and conquer 
techniques and parallel computing, in order to even have a chance to solve the problem in a 
reasonable time [2,7,14,15]. 

The most common surrogate models consist of low degree polynomial approximations. 
This are inadequate to surrogate highly discontinuous functions such as supersonic boom. In this 
paper we use Neural Networks to produce surrogates that more faithfully and successfully 
reproduce this type of functions. We also use a fast training tool for generating the NN using the 
Variable Projection method of  [13]. 

In addition to all of these complexities, the available optimization strategies are such that, 
given initial conditions that are not in the vicinity of the true global optimum they may fail to 
converge or even produce a feasible sub-optimal design.  This is particularly true of system 
vehicle designs (aircraft and spacecraft), where many disciplines interact in a complex multi-
disciplinary analysis, and where the models of each of the disciplines may be noisy and even 
discontinuous. 

However, if a reasonable starting point can be provided for the design, the likelihood of 
convergence to the optimum is greatly improved: the design space is much better behaved in the 
neighborhood of the optimum and since the range of variations of the design parameters is more 
restricted, multi-modal design spaces are typically avoided. 

This view of the initialization problem requires a flexible environment that can be 
tailored to specific applications in order to have the best possibility of success in the design of 
complex multi-disciplinary systems.  For that reason, we have chosen to develop an advanced 
toolbox for design that will contain the necessary modules (approximation, optimization, 
discipline-specific analysis) to tackle a wide variety of aerospace-related problems.  These 
tools can be combined by advanced users and developers to create new design applications with 



relatively low investment. We present here some preliminary results of what has been achieved 
so far. 

 
2.    THE PROBLEM CONSIDERED AND THE VARIOUS MODULES 
EMPLOYED FOR ITS SOLUTION 

 
We start from a high plateau with an existing prototype of a general Toolbox for 

Optimization, which has been successfully applied to other multidisciplinary realms [16], and a 
number of proven tools for aircraft design [1,2,7,8,9]. In this work we sketch some of the 
principal components necessary to carry on this type of task. We focus on the generation of 
sample data for the aerodynamic and boom characteristics of a generic supersonic aircraft 
configuration, the fitting of this data using Neural Networks, and the use of the resulting 
surrogate models in a representative design optimization problem.   

For this test example, a small number of the most relevant design parameters were 
selected, as described below.  Although this is a small number of design variables relative to a 
realistic aerospace vehicle design, it has all of the elements necessary to exercise and evaluate 
the proposed initialization and optimization techniques. The main goals are to maximize the total 
range of the aircraft and to minimize the perceived loudness of the ground boom signature 
(measured in dBA), while satisfying a number of mission and buildability constraints, such as: 

• Structural integrity of the aircraft for a N=2.5 g pull-up maneuver; 
• Take-off field length < 6,000 ft; 
• Landing field length < 6,000 ft. 

For aerodynamic modeling we are currently using the A502 solver, also known as PanAir 
[5,6], a flow solver developed at Boeing to compute the aerodynamic properties of arbitrary 
aircraft configurations flying at either subsonic or supersonic speeds.  This code uses a higher-
order (quadratic doublet, linear source) panel method, based on the solution of the linearized 
potential flow boundary-value problem.  Results are generally valid for cases that satisfy the 
assumptions of linearized potential flow theory – small disturbance, not transonic, irrotational 
flow and negligible viscous effects.  Once the solution is found for the aerodynamic properties 
on the surface of the aircraft, A502 can then easily calculate the flow properties at any location in 
the flow field, hence obtaining the near-field pressure signature needed for sonic boom 
prediction.  In keeping with the axisymmetric assumption of sonic boom theory, the near-field 
pressure can be obtained at arbitrary distances below the aircraft [3]. 

To provide a suitable description of the geometry to A502 a well-defined surface in three-
dimensional space, which constitutes the outer mold line (OML) of the vehicle, needs to be 
generated as a function of the selected design variables.  Because of the importance of the OML, 
a separate utility, Aerosurf, is used to generate and manage it. Aerosurf was specifically created 
for the analysis and design of aircraft configurations. The baseline geometry of an aircraft 
configuration is given to Aerosurf in the form of separate components, each one being described 
by a series of point-wise cross sections. These components can be fuselages, pylons, nacelles, 
and wing-like surfaces.  After lofting the sections that define each component using a bi-cubic 
spline method, Aerosurf intersects these components and divides the resulting surface into a 
series of patches. At this stage, Aerosurf creates a parametric description of each patch and then 
distributes points on their surface, forming a fine structured watertight mesh. Thus, the set of 
points formed by the grids of all patches represents a watertight discretization of the OML within 
Aerosurf.  For Euler or Navier-Stokes computations the surface mesh can be used for the 



generation of the volume meshes as well as the deformation of an existing mesh for design 
purposes. 

The method for computing the ground boom signature is shown in Figure 2. At the near-
field plane location, the pressure signature created by the aircraft is extracted and it is propagated 
down to the ground using extrapolation methods based on geometric acoustics.  

 
 
 

 

 
 
Figure 1: Un-intersected components of a transonic business jet configuration (left) and 

intersected components forming the OML (right). 
 

 
 

Figure 2: Sonic boom propagation procedure. 



 
The location of the near-field must be far enough from the aircraft so that its flow field is 

nearly axisymmetric and there are no remaining diffraction effects, which cannot be handled by 
the extrapolation scheme. Since A502/Panair only uses a surface mesh for all of its calculations, 
it is able to obtain near-field pressures at arbitrary distances without changes in the 
computational cost. 

In this work we are using the Sboom [19] extrapolation method to propagate near-field 
signatures into ground booms.  The sonic boom extrapolation method accounts for vertical 
gradients of atmospheric properties and for stratified winds (although the winds have been set to 
zero in this work). The method relies on results from geometric acoustics for the evolution of the 
wave amplitude, and utilizes isentropic wave theory to account for nonlinear waveform 
distortion due to atmospheric density gradients and stratified winds. 

 
Our past research on low-boom aircraft design focused on reducing the magnitude of 

only the initial peak of the ground boom signature [1,8].  This requirement, which had been 
suggested as the goal of the DARPA-sponsored Quiet Supersonic Platform (QSP) program (∆p0 
< 0.3 psf), neglects the importance of the full signature, which depends on the more 
geometrically complex aft portion of the aircraft where empennage, engine nacelles and diverters 
create more complicated flow patterns. Moreover, such designs often have two shock waves very 
closely following each other in the front portion of the signature [6,9], a behavior that is not 
robust and is therefore undesirable. 

For these reasons, we are computing the perceived loudness of the complete signature 
(dbA). Frequency weighting methods are used to account for the fact that humans do not have an 
equal response to sounds of different frequencies. In these calculations, less weighting is given to 
the frequencies to which the ear is less sensitive. In addition, all signatures computed are post-
processed to add a physical rise-time across the shock waves that yield loudness numbers that are 
more representative of those perceived in reality.  

 
3.       GENERATION OF RESPONSE SURFACES (SURROGATES) 
 

Using the tools described above, 300 configurations obtained via Latin Hypercube 
Sampling (LHS) were generated.  These sample data were fitted using a Neural Network (NN). 
The NN was a single hidden layer perceptron with sigmoid activation functions that provided a 
general nonlinear model. We use for its fast training (i.e., determination of the NN parameters) a 
Variable Projection algorithm (VARPRO [13]) to solve the resulting nonlinear least squares 
separable problem in order to generate a reduced cost approximation of the objective space. This 
is combined with a global optimization algorithm since the resulting problems are generally 
multimodal [4]. 

The training of a single hidden layer Neural Network (NN), using sigmoid activation 
functions leads to a separable nonlinear least-squares problem in which the unknown parameters 
in the network are determined to best fit in the L2 sense the training data (i.e., the input/output 
data contained in the simulation database). This results in a surrogate function that is a linear 
combination of sigmoids: 

 
S(x;α) = Σj aj(1/(1+exp -(<αj,x>+α0

j)),   (1) 
 



where x ∈ Rk corresponds to the input or design parameters, aj are the  linear parameters, and αj 
∈ Rk, α0

j
 , are the  nonlinear parameters; < , > stands for vector inner product. The VARPRO 

algorithm was designed specially for this situation. It consists of first eliminating the linear 
weights aj and then solving the resulting nonlinear least squares problem by a Marquardt type 
algorithm. As shown in [13], this algorithm has been very successful in solving many problems 
of this type and in particular ill-conditioned problems involving linear combinations of 
exponentials. 

The data used corresponds to a representative supersonic business jet configuration.  For 
each output, the training files contain 300 data points, while a test set of an additional 150 data 
points are used for evaluation of the fit. There are eight independent or input variables, namely: 
 

• Wing reference area, 
• Wing aspect ratio, 
• Longitudinal position of the wing, 
• Wing sweep angle, 
• Lift coefficient at initial cruise, 
• Lift coefficient at final cruise, 
• Altitude at initial cruise, 
• Altitude at final cruise. 

 
There are10 dependent variables and we want to approximate each with a different Neural 
Network of the form (1): 

 
• Drag coefficient at initial cruise, 
• Sonic boom initial rise at initial cruise, 
• Sonic boom sound level at initial cruise w/out rise time modification, 
• Sonic boom sound level at initial cruise w/ first type rise time modification, 
• Sonic boom sound level at initial cruise w/ third type rise time modification, 
• Drag coefficient at final cruise, 
• Sonic boom initial rise at final cruise, 
• Sonic boom sound level at final cruise w/out rise time modification, 
• Sonic boom sound level at final cruise w/ first type rise time modification, 
• Sonic boom sound level at final cruise w/ third type rise time modification. 
 
We scale the input variables so that they have zero mean and variance equal to 1. In 

Table  1 we show the results of training and testing for each one of the 10 outputs. 
 

Table 1. Neural Network results for surrogate functionals 
 

Output Max. Value #Sigmoids RMS training RMS test Time (sec) Max. Res. 
1  8 0.0000865 0.00033 872 0.0009 
2  8 0.0033 0.206 831 0.15 
3  10 0.406 1.2 1872 1.5 
4 95 10 0.848 2.0 2332 3.0 
5 95 10 0.541 2.01 2393 1.9 
6 0.017 10 0.0000721 0.000229 2782 0.00023 



7 3 8 0.0364 2.66 1393 0.26 
8 99 10 0.414 1.14 1773 1.9 
9 94 10 0.747 4.46 2090 3.2 

10 94 10 0.545 1.71 1917 2.2 
 
 
The approximate aerodynamic and boom model generated using VARPRO will be used 

in conjunction with low-order, first-principles based weight estimation and performance analysis 
tools.  This include component structural weight estimation, takeoff/landing distance, mission 
range and/or loiter, climb performance, etc. 

For a mission profile to be determined, the approximation model developed using 
VARPRO and the additional weight and performance tools will be used to run representative 
optimizations.   

 
4. DESIGN OPTIMIZATION 

 
The optimization is accomplished by varying the values of the parameters highlighted in red in 
Table 2, where the baseline values were those of the initial design. 
 
For this design test a small number of the most relevant design parameters were selected: wing 
reference area, wing aspect ratio, longitudinal position of the wing, wing sweep angle, lift 
coefficient at the initial and final cruise conditions, and altitude at the initial and final cruise 
conditions.  Although this is a small number of design variables relative to a complete aerospace 
vehicle design, it has all of the elements necessary to exercise and evaluate the initialization and 
optimization techniques proposed. 
 
The ranges of the variables used in the optimization are chosen to match those of the multiple 
(Design of Experiments) analyses conducted to fit the VARPRO surrogates.  It is expected that 
the accuracy of the surrogate models is quite reasonable within these bounds, so that meaningful 
optimizations can be obtained and so that unreasonable results are not arrived at because of 
inaccuracies in the fits.  The performance of the baseline design is also included in this Table (as 
given by the range, boom loudness and take-off and landing field lengths).  Note that the baseline 
design does not meet the take-off field length requirement. 
 
Several other parameters are fixed in the optimization.  These design requirements and/or 
parameters are listed in Table 3. 
 
 
 
 
 
 
 
 
 



 

Table 2.  Design Variables for the Optimization Problem and Performance of the Baseline 
Design. 

Variable Name Baseline Value Allowable Range 

Maximum Take-Off Weight 
(MTOW) 

100,000 lbs 80,000-120,000 lbs 

Wing Reference Area 1,150 sq ft 1,000-1,300 sq ft 

Wing Aspect Ratio 4.0 3-5 

Wing Sweep 52.5 45-60 deg 

Wing Longitudinal Position 
(percent of fuselage length) 

37.5 25-50% 

Initial Cruise Altitude 48,000 ft 42,000-54,000 ft 

Final Cruise Altitude 52,000 ft 42,000 ft – 54,000 ft 

Range 3,261 nmi Output 

Boom Perceived Loudness 75.3 dBA Output 

Take-Off Field Length 9,633 ft Output 

Landing Field Length 5,322 ft Output 

 

Design Requirement Value 

Payload weight 8,000 lbs 

Cruise Mach Number 1.8 

Ultimate Load 2.5 

Number of Engines 2 

 
A top view of the baseline configuration can be seen in Figure 3 and will be used for reference 
while the results are presented below.  The baseline configuration is obtained using the values of 
the design parameters shown in Table 2.  The corresponding performance of the baseline design 
(range and perceived loudness as well as take-off and landing field lengths) is also presented in 
the Table.  Notice that this baseline configuration had been obtained using a slightly lower cruise 



Mach number (1.6) and a single-objective optimization where the function to be minimized was 
the take-off gross weight. 
 

Table 3.  Summary of Design requirements and Additional Parameters 

Design Parameter Value 

Wing Taper Ratio 0.3 

Average Wing t/c Ratio 0.03 

Fuselage Length 80 ft 

Fuselage Width 6 ft 

Fuselage Height 6 ft 

Sea Level Thrust (per engine) 15,000 lbs 

Max CL at Take-Off 1.1 

Max CL on Approach 1.4 

Thrust Specific Fuel 
Consumption 

0.25 kg/h/N 

 
 
 

 
 
 

 
 
 
 
 
 
 
 
 

Figure 3.  Top view of the baseline configuration for this design study. 
 
 
 
 
 



Design Results 
 
Using the baseline configuration described above and the parameters in Table 2, we generated an 
initial population by randomly perturbing the parameters around the baseline configuration and 
calculating the performance, i.e., the perceived noise level and range (these are the open circles 
in Figure 4). From this initial population the NSGA-II [10] algorithm, an elitist multi-objective 
genetic algorithm evolves it with the purpose of generating an approximation to the Pareto front, 
while satisfying all the constraints in Table 3 (the resulting Pareto front is represented by the 
asterisks). Thus, the Pareto front (the image of the set of Pareto equilibrium points of the 
problem mapped by the objectives) gives a complete image of all the solutions for this bi-
objective optimization, from which we can select a compromise feasible design that satisfies 
the requirements of the problem. 

 
 

 
Figure 4.  Results in Objective Space for the Multi-Objective Genetic Algorithm Optimization.  

Initial Population: open circles; Final Population: asterisks. 
 

The initial population is composed of 64 alternative designs that are randomly distributed within 
the design space.  The level of performance of these designs is represented by the open circles in 



Figure 4.  Each of these circles represents a pair of (Range, Loudness) for each of the aircraft in 
question.  Note that the optimization algorithm attempts to drive all designs toward the upper left 
hand corner of the graph.   Of the 64 initial design alternatives some are feasible designs and 
others are unfeasible. That is the reason why some open circles appear to have extraordinary 
performance. Notice, again, that the baseline configuration does not meet the constraints (take-
off field length in this case) of the optimization problem. 
 
We choose a crossover probability for the variables of 0.75 and a mutation probability of 0.125.  
The distribution indices for both the crossover and mutation operations are taken to be 12 and 
25% respectively.  The population is allowed to evolve over 1,000 generations.  As the 
generations proceed the entire population migrates towards feasibility and attempts to maximize 
their range and minimize their noise level simultaneously.  The result is the Pareto front of 
solutions given by the asterisks in the graph.  This Pareto front represents the set of non-
dominated solutions (no other solution is better than any of those solutions in both performance 
measures simultaneously) of the problem.  Notice that all asterisks on the Pareto front are 
feasible, indicating that the aircraft that each point represents satisfies the constraints of the 
problem (which was not the case for the initial population). 
 
The designs / aircrafts on the Pareto front provide the designer with alternatives to trade the 
relative benefits of each of the two (conflicting) objective functions: one may want to choose an 
aircraft with very low boom signature but also very low range or an aircraft with extremely high 
range but rather poor sonic signature or something in between.  Notice that the shape of the 
Pareto front is quite unique: it is initially very steep and then its slope appears to decrease to a 
smaller value.  In fact the Pareto front is well approximated by two straight-line segments with a 
knee located at a loudness level of approximately 67.5 dBA.  The interpretation is clear: it pays 
off to sacrifice a little bit of the quietness of the aircraft to attain significant improvements in the 
range of the aircraft.  After the loudness increases beyond 67.5 dBA modest improvements in 
range are obtained at the expense of very large increases in sonic boom loudness.  
 
Figures 5, 6, and 7 show representative examples for different aircraft on the Pareto front.  In 
each of these figures we see the resulting configuration on the left, and, on the right, we compare 
the baseline configuration (left) to the actual configuration (right) side by side.  This comparison 
is provided for reference in order to understand the magnitude of the changes that the optimizer 
has dictated. 
 



 
                                  Actual Low-Boom Design          Baseline          Low-Boom Design 

Figure 5.  Result of Multi-Objective Optimization:  Lowest Boom Design. 

 
                                Maximum Range Design          Baseline          Maximum Range Design 

Figure 6.  Result of Multi-Objective optimization:  Highest Range Design. 



 
                                     Intermediate Design              Baseline          Intermediate Design 

Figure 7.  Result of Multi-Objective Optimization: Intermediate Design. 

Figure 5 shows the configuration for the lowest boom aircraft: the asterisk in the lower left 
corner of Figure 4.  This configuration has a perceived loudness of 66.4 dBA but a very small 
computed range of 1,531 nmi.  The optimizer has chosen to move the wing backwards almost as 
far as it is allowed (to 44.8% of the length of the fuselage).  The TOGW ends up at 90,200 lbs 
and the wing reference area has increased (in order to decrease the wing loading) as far as it is 
allowed (1,300 sq ft).  The optimizer also sees benefits in increasing the cruise altitude (in order 
to lower the boom significantly) to 54,000 ft for the entire cruise segment.  One can quickly see 
that this aircraft is not very realistic since stability and control issues were not included in the 
formulation.  If these considerations were included, the optimizer would be prevented from 
moving the wing so far back. 
 
Figure 6 shows, instead, the design with the highest range (and also the highest noise levels).  
The calculated range for this aircraft is 3,902 nmi (close to the 4,000 nmi that we had intended to 
obtain) but the perceived noise level is 85.45 dBA: far too high to be allowed to fly 
supersonically over land.  The changes in the geometry and vehicle characteristics are less 
dramatic.   The TOGW is slightly lower than in the previous example, 89,154 lbs.   The wing 
also has a smaller wing area, a smaller aspect ratio (3.0) and a more forward wing position 
(25%).   The flight altitudes are slightly diminished but close to the upper limit of 54,000 ft.  
Additional environmental considerations (such as the effect of CO and H2O emissions on the 
ozone layer) may actually force a harder constraint on the maximum allowable flight altitude.  
This design, however, is representative of the type of design that would be obtained if sonic 
boom considerations were not taken into account at all. 
 



Finally, Figure 7 shows the design results of an intermediate point in the Pareto front.  We have 
chosen to display the first design that achieves a range greater or equal to 3,500 nmi.  As it turns 
out, this design shows a range of 3,504 nmi and a perceived noise level of 76.7 dBA.  This 
aircraft can be considered a reasonable compromise between the two competing objectives of 
boom loudness and aircraft maximum range.  The TOGW is found to be 90,708 lbs with a wing 
reference area of nearly 1,300 sq ft.  Since no viscous penalty was added for the increasing 
surface area of the wing, the optimizer chooses to make it as large as possible.  The aspect ratio 
of the wing is 3.93, the sweep angle is nearly 47 deg and the wing longitudinal position is in 
between the previous two designs, but closer to the maximum range design (at 29% of the length 
of the fuselage).  As before, the optimizer chooses to maximize the initial and final cruise 
altitudes mainly for benefits in boom loudness. 
 
Although we have glossed over the complexities of the above task we like to give a hint of it by 
showing the work flow diagram of Figure 8. 
 
Conclusions and Future Work 
 
The results presented earlier are meant to serve as an example of the design work that can be 
done with the technology that has been developed during this work.  In fact the designs presented 
are meant to constitute a valid initial design for continued refinement (during the preliminary 
design phase).  The combination of advanced response surface formulations, the inclusion of the 
representative analyses in the optimization and the ability to treat multi-objective optimizations 
with constraints enables the designer to search very large regions of the design space (note the 
variability in the geometries and the design parameters of the three aircraft presented in Figures 
5, 6, and 7) which may contain multiple local minima and hone in the areas of the design space 
that are most promising for further design work. 
 
Areas of improvement for this work include the addition of higher fidelity modules for the 
analysis of the various disciplines that participate in the design, the integration with more 
efficient optimization algorithms (such as [11]), and the effective use of multi-fidelity 
approximations for the response surfaces in the problem. 
 
Also, it would help to have multiobjective optimization methods that do not require as many goal 
evaluations as the genetic and evolutionary algorithms do. Some initial work in that direction can 
be found in Pereyra [17] that uses Newton method coupled to continuation techniques and a 
novel type of constraints that guaranties equispacing of the sampled Pareto front (contrast with 
the results of Figure 4 that required thousands of evaluations and provided and adequately 
sampled Pareto front, although hardly equispaced). 

 
 



 
 

Figure 8. Computational flow diagram of aircraft design optimization. Inputs on top, outputs on 
bottom. 
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